暨南经院统计学系列Seminar第111期:黄辉(中山大学)

发布者:余璐尧发布时间:2023-04-06浏览次数:149

主题Principal Component Analysis of Graphical-Functional Time Series

主讲人:黄辉教授 中山大学

主持人:王国长教授 威尼斯欢迎你welcome

时间202346日(周四)1000-1100

地点:威尼斯欢迎你welcome石牌校区威尼斯欢迎你welcome大楼(中惠楼)102

 

摘要

We consider multivariate functional time series with a two-way dependence structure: a serial dependence across time points and a graphical interaction among the multiple functions within each time point. We develop the notion of generalized weak separability, a more general condition than those assumed in literature, and use it to characterize the two-way structure in multivariate functional time series. Based on the proposed generalized weak separability, we develop a unified framework for functional graphical models and dynamic principal component analysis, and further extend it to optimally reconstruct signals from contaminated multivariate functional time series data. We investigate asymptotic properties of the resulting estimators and illustrate the effectiveness of our proposed approach through extensive simulations. We apply our method to hourly air pollution data that were collected from a monitoring network in China.

 

主讲人简介

黄辉博士2004年本科毕业于中国科学技术大学统计与金融系,2010年于美国马里兰大学巴郡分校获统计学博士学位,随后分别在耶鲁大学公共卫生学院和迈阿密大学商学院从事博士后研究工作。2013年回国任教,2015年获海外高层次人才青年项目资助。目前为中山大学数学学院教授、博士生导师。现主要从事空间统计学、时空数据分析、函数型数据分析等领域的教学和研究工作,迄今为止主持科技部国家重点研发项目子课题、国家自然科学基金重点项目子课题、面上项目和青年项目各1项,并在JASABiometricsJMLR等国际顶级统计学、交叉学科期刊发表论文多篇。