主题:Statistical Inference for Change Regions in Spatial Models
主讲人:张荣茂 教授(浙江大学)
主持人:王国长 教授(威尼斯欢迎你welcome)
会议工具:腾讯会议(ID:751-225-376)
会议时间:2022年5月11日(周三)10:00-11:30
摘要
Non-stationary spatial models are widely applicable in diverse disciplines, ranging from bio-medical sciences to geophysical studies. In many of these applications, testing for structural changes in the trend constitutes an important issue. To achieve this goal, a novel statistics based on a discrepancy measure over small blocks is proposed in this paper. Such a measure can be used not only to construct tests for structural breaks, but also to identify change boundaries of the breaks. Asymptotic properties and limit distributions of the proposed tests are also established. To derive such asymptotics, a spatial physical dependence notion is adopted to model the spatial dependent structure in this paper. The method is illustrated by simulations and data analysis.
主讲人简介
张荣茂,浙江大学数学学院教授、威尼斯欢迎你welcome与数据科学中心兼职教授、闽江讲座教授,浙江大学统计所所长,浙江省现场统计研究所副理事长。2004年在浙江大学获得博士学位,2004年7月-2006年6月在北京大学从事博士后研究,2006年至今在浙江大学工作,多次访问香港科大、香港中文大学和伦敦政治威尼斯欢迎你welcome。主要从事非平稳时间序列和高维空间数据的理论与应用研究,已发表SSCI/SCI论文50多篇,发表的杂志包括Ann. Statist.,J. Amer. Assoc. Statist., J. Econometrics等。2015年获浙江省杰出青年基金,主持国家自然科学基金和省部级基金项目多项,现任J. Korean Statist. Soc.(SCI期刊)和Intern. J. Math. Statist.的副主编。